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Overview & Talk Goals

I Very brief introduction to axions
I Current axion search strategies
I Overlap with accelerator science/tech interests?
I We require low-noise single photon counting → QIS

detector tech
I Our work

This talk will highlight some of the points of common interest with the
accelerator community.
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The axion is a proposed solution to the strong CP
problem.

I Peccei & Quinn, Phys. Rev. Lett 38, 1440, 1977.
I Spontaneously broken symmetry → new boson
I Axion field “tilts” the degenerate QCD vacuum,

resulting in a CP-conserving minimum.
I θ = θ0e

ımat ; θ0 =
√

2ρa
Λ4
QCD

= 3.7× 10−19

I P. Sikivie’s “Pool table analogy”:
https://arxiv.org/pdf/hep-ph/9506229.pdf
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Axions and WIMPs

WIMPs scatter as quanta

I WIMP-nucleon
scattering detector
strategies

I Mass ∼ 10s-100s
of GeV?

Axions scatter as classical waves

I Coherently oscillating
“clouds”

I h/p ∼ 100 m
I Phase coherence over ∼ms.
I µev < ma < meV
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Axion mass is only loosely constrained by
theory/measurement.

I Laγγ = gaγγaE · B
I DFSZ model for a→ γγ detection relevant to DM

axions. Points are predictions from theory.
I ADMX has reached DFSZ-compatible

sensitivity: PRL 124, 101303 (2020).
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How to detect axions?

Maxwell’s equations (theorist units):

∇× B− ∂E

∂t
= JEM

∇ · E = ρEM

∇× E = −∂B

∂t
∇ · B = 0

Axions represent an extra source term in Maxwell’s equations:

∇× B− ∂E

∂t
= g

(
E×∇a− B

∂a

∂t

)
+ JEM

∇ · E = ρEM + gB · ∇a

http://arxiv.org/pdf/1310.8545.pdf
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How do you detect axions?

∇× B− ∂E

∂t
= g

(
E×∇a− B

∂a

∂t

)
+ JEM

∇ · E = ρEM + gB · ∇a

In the presence of a strong magnetic field B0, axions give us an exotic

current density Ja = −gB0ȧ. Then we have a detection strategy:

1. Use a multi-Tesla B-field to convert axions into
virtual photons.

2. Use a resonator to accumulate/detect the faint
signal (< 10−21 W) from photons.

3. Make the cavity tunable.
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Resonant axion detection: an analogy

Accelerators use RF cavities to impart energy to particle beams. This is
just the inverse problem: using RF cavities to extract energy from weak

sources.
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Signal power and SNR drive haloscope design.

P ≈ 2.2× 10−23 W ·
(

ρa

0.45 GeV/cm3

)(
fa

740 MHz

)
×
(gaγγ

0.36

)2( V

136 L

)(
B

7.6 T

)2( Q

3× 104

)(
C

0.4

)
Dicke radiometer
equation explains
design constraints:

SNR =
P

kTs

√
t

∆f

I Signal power is limited: P ∝ B2V

I t . 100 s for realistic run schedules
I System noise temperature

Ts = Tphys + TN

I At the quantum limit,
TN → 48 mK at 1 GHz
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ADMX Overview

50 cm

I 500 MHz - 1 GHz
cavity

I 7 T solenoid
I 3He-4He dilution

refrigerator
I Quantum-limited

amplification
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How to scale in frequency?

Fabrication underway for 4-cavity array,
1-2 GHz.
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How to scale in frequency?

Fermilab concept for ≥ 2 GHz cavity.
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Perhaps you’ve already noticed some points of common interest between
axion hunters and accelerator builders. Let’s discuss in more depth.
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Superconducting magnets play a significant role in
our experimental planning. Recall Psig ∝ B2V .

Slide credit: M. Bird, NHMFL ADMX Magnet Workshop, 2018
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Superconducting magnets play a significant role in
our experimental planning. Recall Psig ∝ B2V .

Slide credit: M. Bird, NHMFL ADMX Magnet Workshop, 2018
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We also need high-Q, normal-conducting cavities.

I Recall Psig ∝ Q.
I Axion linewidth corresponds to Q ∼ 106.
I Typical performance w/ OFHC copper is O(104) at

1 GHz.
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Ankur Agrawal is building PBG structures at U.
Chicago.

Alumina rods in a regular lattice; center defect forms cavity.
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Ankur Agrawal is building PBG structures at U.
Chicago.

These results are from 2019, with improvements coming online very
soon.
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Combining power from multiple, tunable cavities
is also an interesting problem.

McAllister et al, arXiv:1510.05775 (2019).
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https://arxiv.org/pdf/1510.05775.pdf


Finally, there are some interesting challenges for
cavity designers.

I P ∝ C ∼ 0.4
I

C =
|
∫
V dV ~E · ~B0|2

B2
0V
∫
dV ε|E |2

I S. Asztalos et al., PRD 64, 092003 (2001).
I This is especially interesting as the cavity tuning

approaches a mode crossing.
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.64.092003


Back to the central problem: low-noise, low-rate microwave photon
detection. Let’s do some quantum mechanics to understand the

category of problem we have here.
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Lower noise limit of one photon per resolved
mode.

From Clerk et al., https://arxiv.org/abs/0810.4729:

I Apply a gain G to a bosonic input mode a:
b =
√
Ga + F , for added noise F .

I [b, b†] = G [a, a†] + [F , F †]
I Apply the generalized uncertainty principle:

(∆b)2 ≥ G (∆a)2 + 1
2 |G − 1|

I In the large-gain limit,

(∆b)2

G
≥ (∆a)2 +

1

2
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Linear amplifiers suffer from irreducible QM noise.

I Standard Quantum Limit (SQL): one photon per
resolved mode

I Expressed as a rate:

dNSQL

dt
= 1×∆f =

2f

Qa

I The axion width means Qa ∼ 106.
I This is just a consequence of the Heisenberg

uncertainty principle.
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“Squeezed states” can help solve this problem.
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Quantum nondemolition

100 101

Frequency (GHz)

10−4

100

104

108

P
h

ot
on

ra
te

d
N

/d
t

(H
z)

SQL

qubit error background, pmerr = 0.01

QND noise, 30 mK

QND noise, 100 mK

QND noise, 2 K

DFSZ signal rate, B0=14 T

I We can circumvent the SQL using a technique called
quantum nondemolition.

I If we are successful, the dominant noise source will
be the system’s blackbody photons.
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Stark Effect in quantum mechanics

Hydrogen atom perturbed by an electric field ~E = Eẑ :

H =
p2

2me
− e2

4πεr
+ e|~E |z .

Solve using perturbation theory to find

∆E = −1

2
α|~E |2

where

α = 2e2
∑ |〈n`m|z |n′`′m〉|2

En′`′m′ − En`m
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The consequence of this is a field-dependent
level-splitting.

M. Courtney, commons.wikimedia.org/wiki/File:Hfspec1.jpg
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Similar problem: two-level “atom” weakly coupled
to a harmonic oscillator

H = ~ωr (a†a + 1/2) + ~ωqσz/2 +
~g2

∆
(a†a + 1/2)σz

with ∆ = ωq − ωr . We’ll assume weak coupling g � ∆.

I Weak coupling → photon not absorbed by “atom”.
I Note that the final term commutes with the others.
I This is the Jaynes-Cummings Hamiltonian.

I Number operator N̂ = a†a + σz commutes with H!
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Rewrite JC Hamiltonian suggestively.

H = ~ωr (a†a + 1/2) + ~ωqσz/2 +
~g2

∆
(a†a + 1/2)σz

H = ~
(
ωr +

g2σz
∆

)
(a†a + 1/2) + ~ωqσz/2

so ωr → ωr ± g2/∆. Or, similarly,

H = ~ωr (a†a + 1/2) +
~
2

(
ωq + 2

~g2

∆
a†a +

g2

∆

)
σz .

This is effectively an AC Stark shift in the atom transition frequency
ωq → ωq + 2n̄g2/∆.
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Choice of “atoms” not limited to atoms.

I Anharmonicity: energy levels are “addressable”.
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Probing the qubit state |n〉 by observing a
frequency shift in the cavity

Observation of |n〉 through 15 MHz dispersive frequency shift.
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Measurement cartoon

Thermal background Boltzmann-suppressed via 10 mK He dilution
refrigerator, funded through Fermilab LDRD.
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In practice, what does this look like?
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We have a dilution refrigerator runinng at SiDet,
in Lab B.
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Current work

I Devices fabricated at U. Chicago by Schuster group.
I Characterization in Lab B dilution fridge is ongoing.
I Also under development: further ways to increase

signal / suppress noise power.
I PBG cavity development (see above)
I Multi-qubit readout
I TWPA implementation
I Line filtering
I Radiation-induced quasiparticle burst studies
I Magnet integration
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Device characterization is routine now.
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A. Dixit is working on multi-qubit measurements
at U. Chicago

I Qubit parity error perr ≈ 0.01.
I Require N qubit agreement: perr → (0.01)N .
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TWPA for quantum-limited, broadband readout

I Thanks to MIT Lincon Labs and IARPA for
providing us with devices

I C. Macklin, Science 350.6258 (2015).
I R. Khatiwada, M. Hassan, D. Bowring (FNAL) and

M. Zaidel (Penn State) automated TWPA
readout this summer. Preliminary results:
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In progress: improved filtering of thermal photons

I F. Yan et al., PRL 120, 260504 (2018).
I “Eccosorb” epoxy and its derivative filters are

standard tools for IR filtering.
I In partnership with N. Kurinsky (FNAL) and G.

Spahn (UMN) we’re developing in-house filter
sources.

43 D. Bowring — Quantum sensor for photon counting in particle physics experiments

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.260504


Radiation-induced quasiparticle bursts?

I c.f. N. Kurinsky, Dark Matter Efforts at Fermilab,
August 11, 2020 Users’ Meeting.

I Broad interest in a very-low-background test stand
for characterizing superconducting circuits.

I e.g. L. Cardani et al., arXiv 2005.02286
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Can’t find axions without a magnet. . .

I 14 T solenoid procured from Oxford Instruments
I Testing phase now? Expect delivery in Fall 2020,

thanks to COVID.
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Conclusions

Thanks for your attention!

I Axion searches require low-noise,
single-microwave-photon readout.

I Quantum computing has developed these tools for
us already.

I Goal is to take this technology and deploy it in the
context of a particle physics experiment.
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